
1

Cheat Sheet: Advanced Linux Commands

Lets Get Started…

	 This	cheat	sheet	should	help	you	get	started	with	developing	a	(web)	application	on	Red	
Hat	Enterprise	Linux	(RHEL).	We’ll	assume	you	have	a	VM	running	RHEL,	by	-	for	example	
-	having	run	through	the	steps	in	the	“Using	Vagrant	to	Get	Started	with	RHEL”	blog	

	 As	an	example	scenario,	we	are	going	to	pretend	we	are	developing	a	LAMP	(Linux,	
Apache,	MariaDB	and	PHP)	application	on	single	machine	running	Red	Hat	Enterprise	
Linux	7.	As	a	first	step,	we’re	going	to	install	Apache,	PHP	and	MariaDB	(the	drop-in	
replacement	for	MySQL	that’s	shipped	with	Red	Hat	Enterprise	Linux	7),	and	start	the	
appropriate	services:

yum -y install httpd mariadb-server
php-mysql php

Installs	the	correct	packages	to	start	
developing	a	LAMP	application:	the	Apache	
webserver,	the	base	packages	for	PHP,	and	
a	MariaDB	server,	including	MySQL	bindings	
for	PHP.

$ systemctl status httpd Show	information	about	httpd,	including	
process	ID,	child	processes,	time	since	
startup,	what	man	pages	are	available,	the	
most	recent	log	messages,	and	more.	

# systemctl start httpd mariadb Start	the	httpd	and	mariadb	services.	Instead	
of	‘start’,	you	can	also	use	stop	or	restart,	for	
obvious	use	cases.

# systemctl enable httpd mariadb Enable	the	httpd	and	mariadb	services	to	
start	at	next	boot.	You	can	also	use	disable,	
mask	or	unmask.	

So	the	framework	is	installed	and	services	should	be	running;	let’s	check	if	everything	
is	ok	by	checking	out	the	logs.	(You	must	either	be	a	member	of	the	‘adm’	group	on	the	
system,	or	run	these	commands	with	‘sudo’	prepended	to	them	to	see	all	log	messages.)

$ journalctl -f -l Show	and	keep	open	(-f)	the	system	log,	
allowing	you	to	see	new	messages	scrolling	
by.	The	-l	flag	prevents	truncating	of	long	
lines.

$ journalctl -f -l -u httpd -u
mariadb

Same	as	above,	but	only	for	log	messages	
from	the	httpd	and	mariadb	services.

$ journalctl -f -l -u httpd -u
mariadb --since -300

Same	as	above,	only	for	log	messages	that	
are	less	than	300	seconds	(5	minutes)	old

https://developers.redhat.com/blog/2016/06/06/using-vagrant-to-get-started-with-rhel/

2

Now	in	order	to	test	our	app	in	the	VM,	we	need	the	IP	address	of	the	server.	For	that	
we	want	to	see	the	IP	address	configured	for	the	first	network	card,	called	‘eth0’	in	most	
virtual	machines:

$ nmcli d Show	the	status	of	all	network	interfaces

$ nmcli d show eth0 Show	details	of	network	interface	eth0;	
alternatively	you	can	use	‘ip	a	s	eth0’

# nmcli d connect eth0 Bring	up	the	network	interface	eth0.	You	
can	use	‘disconnect’	to	bring	the	interface	
down.

Now	let’s	drop	an	example	PHP	file	in	/var/www/html	to	see	if	everything	works

$ cat << EOF > /var/www/html/test.php
<?php
 phpinfo();
?>
EOF

All	text	between	the	first	line	and	EOF	
will	be	added	to	/var/www/html/test.php.	
Any	existing	content	in	that	file	will	be	
overwritten.	This	is	called	a	‘heredoc’.

Now	we	can	download	the	test.php	file	from	either	the	same	machine,	or	our	local	
workstation:

$ curl http://www.someapp.org/test.php 	
$ curl http://10.0.0.10/test.php

Use	the	‘curl’	command	to	perform	a	
download	of	the	test.php	file	at	www.
someapp.org	or	10.0.0.10,	respectively

$ curl http://localhost:80/someapp/api
-v

Fetch	sent	and	received	HTTP	GET	status,	
API	response	payload	from	the	local	host

$ curl https://localhost:443/someapp/
api -v -F “arg1=foo” -F “arg2=bar”

Fetch	sent	and	received	HTTPS	POST	
status,	API	response	payload	from	the	local	
host	

$ host www.someapp.org Use	the	‘host’	command	to	test	DNS	name	
resolution;	you	might	need	to	run	‘yum	-y	
install	bind-utils’	for	this	command	to	work.

Generally,	files	in	/var/www/html are	owned	by	apache.In	a	dev	environment,	you	might	
want	to	make	those	files	owned	by	apache	and	a	developer	group.	Here	are	some	
commands	that	are	useful	to	make	that	a	reality.

# chown apache:developers test.php Change	ownership	of	test.php	to	“apache”	
and	the	“developers”	group.	(You	can	only	
change	ownership	of	a	file	to	another	user	
if	you	are	the	superuser,	“root”.)

# chmod u+rw,g+rw,o+r test.php Change	the	mode	of	test.php	to	allow	owner	
(u)	and	users	in	the	group	(g)	to	read	and	
write	(+rw)	it,	and	the	rest	of	the	world	(o)	
to	just	read	(+r)	it.

# chmod g+rw test.php Allow	users	in	the	group	of	test.php	to	read	
and	write	it

https://en.wikipedia.org/wiki/Here_document#Unix_shells

3

# chown -R :developers /var/www/html Change	ownership	of	/var/www/html	and	
all	files	in	that	directory	to	the	developers	
group.

# chmod g+s /var/www/html Special	command	to	make	sure	that	all	files	
created	in	/var/www/html	are	owned	by	the	
group	that	own	/var/www/html;	it	sets	to	
so-called	sticky	bit.

Maybe	you	have	a	script	that	you	want	to	use	on	that	server,	too.	You’ll	need	to	make	it	
executable	first:

$ chmod 755 somescript Allow	the	owner	of	somescript	to	read,	
write	and	execute	it,	and	the	rest	of	the	
world	to	just	read	and	execute	it.

$ chmod +x somefile Allow	execution	of	somefile

Red	Hat	Enterprise	Linux	7	ships	with	a	security	feature	called	SELinux.	SELinux	basically	
labels	all	files,	and	then	whitelists	what	labels	a	program	(e.g.	Apache)	is	allowed	to	read.

$ ls -lZ test.php Show	the	SELinux	label	of	test.php.	Files	
in	/var/www/html	need	to	be	labeled	
httpd_sys_content_t	(content	readable	
by	Apache)	or	httpd_sys_rw_content_t	
(content	readable	and	writable	by	Apache).

# ausearch -sv no --comm httpd Search	the	audit	log	for	recently	denied	
events	triggered	by	Apache	(‘httpd’).	Useful	
for	debugging	an	application	that	might	be	
running	into	SELinux	related	problems.

# restorecon -FvR /var/www/html Use	this	command	to	restore	the	default	
labels	on	all	files	under	/var/www/html	if	
different	from	those	mentioned	above.

$ getenforce Show	what	mode	SELinux	is	in:	Disabled,	
Permissive	or	Enforcing.	Switch	SELinux	to	
enforcing	mode	with	‘setenforce	1’.

semanage fcontext -l | grep '/var/
www'

View	all	SELinux	rules	that	potentially	apply	
to	/var/www	in	the	extensive	SELinux	docs.	
Install	the	policycoreutils-python	package	
with	yum	to	get	the	‘semanage’	command.

If	you	have	a	database	on	a	separate	server,	you	need	to	allow	Apache	to	initiate	network	
connections,	which	SELinux	denies	by	default.	This	is	done	by	setting	an	SELinux	boolean.

$ getsebool -a Show	all	available	SELinux	boolean	settings

# setsebool httpd_can_network_connect_db 1 Tell	SELinux	to	allow	httpd	to	make	
connections	to	databases	on	other	servers.	
Use	the	-P	flag	to	make	permanent.

https://en.wikipedia.org/wiki/Sticky_bit
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

4

The	above	should	hopefully	get	you	started	with	developing	on	RHEL,	but	you	can	do	so	
much	more!	For	example,	here	are	some	commands	to	run	a	program	in	the	background	in	
your	shell.

$./someprogram & Start	someprogram	in	the	background.	
You	can	also	just	start	someprogram	and	
hit	CTRL-Z	to	suspend	it	and	send	it	to	the	
background.

$ jobs Show	all	background	jobs	in	current	shell;	
add	-l	for	more	information	on	the	jobs.

$ bg [number] Continue	suspended	job	(i.e.	a	job	
suspended	with	CTRL-Z)	in	the	background.

$ fg [number] Bring	a	background	job	to	the	foreground	
again.

And	if	you	need	to	get	an	idea	on	how	your	application	or	system	is	performing,	you	might	
like	these	commands

$ free Show	the	amount	of	free	memory.	Please	
note	it’s	not	necessarily	a	problem	if	Linux	
seems	to	use	a	lot	of	memory!

$ vmstat 3 Every	three	seconds,	show	statistics	about	
the	system,	like	utilization,	memory	in	use,	
etc.	

$ iotop Show	‘top’	like	output	for	disk	i/o.	Must	
be	root	to	run	this.	First	install	the	iotop	
package	with	yum.

$ ps xauww Show	the	system	process	list

Finally,	maybe	you	want	to	use	Java	instead	of	PHP.	These	two	commands	install	some	
programs	you	might	want	to	use	in	that	case

subscription-manager repos --enable
rhel-server-rhscl-7-rpms

Enable	the	Software	Collections	
repositories	to	install	packages	from	
(required	for	Maven)

yum -y install java-1.8.0-openjdk-
devel tomcat maven30 git

Single	command	to	install	your	Java	
compiler,	Tomcat	webserver,	maven	and	git.

http://www.linuxatemyram.com/

5

About the Author

Maxim Burgerhout	is	a	solution	architect	in	the	Red	Hat	Benelux	
team.	He	is	often	spotted	talking	about	systems	management	and	
infrastructure,	including	infrastructure	automation,	implementing	
self-service	deployments	and	configuration	management.

In	the	past,	he’s	been	involved	in	various	migrations	from	legacy	
Unix	to	Red	Hat	Enterprise	Linux.	Those	migrations	always	involved	
making	developers	feel	at	home	on	the	new	platform	by	providing	the	
right	tools	and	documentation	and	getting	them	up	to	speed	quickly.

Maxim	has	done	some	development	in	Ruby,	PHP	and	Python	in	the	
past	and	is	currently	learning	Java,	because,	well,		
just	because.

	@MaximBurgerhout 	Linkedin

https://twitter.com/MaximBurgerhout
https://nl.linkedin.com/in/mburgerh

